enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.

  3. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    The reason the sample covariance matrix has in the denominator rather than is essentially that the population mean ⁡ is not known and is replaced by the sample mean ¯. If the population mean E ⁡ ( X ) {\displaystyle \operatorname {E} (\mathbf {X} )} is known, the analogous unbiased estimate is given by

  4. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Firstly, if the true population mean is unknown, then the sample variance (which uses the sample mean in place of the true mean) is a biased estimator: it underestimates the variance by a factor of (n − 1) / n; correcting this factor, resulting in the sum of squared deviations about the sample mean divided by n-1 instead of n, is called ...

  5. Cochran's theorem - Wikipedia

    en.wikipedia.org/wiki/Cochran's_theorem

    This shows that the sample mean and sample variance are independent. This can also be shown by Basu's theorem, and in fact this property characterizes the normal distribution – for no other distribution are the sample mean and sample variance independent. [3]

  6. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.

  7. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    The expected values needed in the covariance formula are estimated using the sample mean, e.g. = = and the covariance matrix is estimated by the sample covariance matrix ⁡ (,) , where the angular brackets denote sample averaging as before except that the Bessel's correction should be made to avoid bias.

  8. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    The sample mean, on the other hand, is an unbiased [5] estimator of the population mean μ. [3] Note that the usual definition of sample variance is = = (¯), and this is an unbiased estimator of the population variance.

  9. Modes of variation - Wikipedia

    en.wikipedia.org/wiki/Modes_of_variation

    In statistics, modes of variation [1] are a continuously indexed set of vectors or functions that are centered at a mean and are used to depict the variation in a population or sample. Typically, variation patterns in the data can be decomposed in descending order of eigenvalues with the directions represented by the corresponding eigenvectors ...