Search results
Results from the WOW.Com Content Network
A subset of a vector space is called a cone if for all real >,.A cone is called pointed if it contains the origin. A cone is convex if and only if +. The intersection of any non-empty family of cones (resp. convex cones) is again a cone (resp. convex cone); the same is true of the union of an increasing (under set inclusion) family of cones (resp. convex cones).
Three similar vectors are in use that condense the inversions of a permutation into a vector that uniquely determines it. They are often called inversion vector or Lehmer code. (A list of sources is found here.) This article uses the term inversion vector like Wolfram. [13]
In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .
Then, sorting a subset of is equivalent to convert it into an increasing sequence. The lexicographic order on the resulting sequences induces thus an order on the subsets, which is also called the lexicographical order. In this context, one generally prefer to sort first the subsets by cardinality, such as in the shortlex order. Therefore, in ...
Both geometric vectors and tuples can be added and scaled, and these vector operations led to the concept of a vector space, which is a set equipped with a vector addition and a scalar multiplication that satisfy some axioms generalizing the main properties of operations on the above sorts of vectors. A vector space formed by geometric vectors ...
In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...
Majorization is a partial order for vectors whose entries are non-decreasing, but only a preorder for general vectors, since majorization is agnostic to the ordering of the entries in vectors, e.g., the statement (,) (,) is simply equivalent to (,) (,).
The shuffle sort [6] is a variant of bucket sort that begins by removing the first 1/8 of the n items to be sorted, sorts them recursively, and puts them in an array. This creates n/8 "buckets" to which the remaining 7/8 of the items are distributed. Each "bucket" is then sorted, and the "buckets" are concatenated into a sorted array.