Search results
Results from the WOW.Com Content Network
Because 5-fluorouracil is similar in shape to, but does not undergo the same chemistry as, uracil, the drug inhibits RNA transcription enzymes, thereby blocking RNA synthesis and stopping the growth of cancerous cells. [2] Uracil can also be used in the synthesis of caffeine. [27] Uracil has also shown potential as a HIV viral capsid inhibitor ...
An artificial form of RNA consisting entirely of uracil-containing nucleotides (polyuridylic acid or poly-U) was added to the extract, causing it to form a protein composed entirely of the amino acid phenylalanine. This experiment cracked the first codon of the genetic code and showed that RNA controlled the production of specific types of protein.
Since 2001, 40 non-natural amino acids have been added into proteins by creating a unique codon (recoding) and a corresponding transfer-RNA:aminoacyl – tRNA-synthetase pair to encode it with diverse physicochemical and biological properties in order to be used as a tool to exploring protein structure and function or to create novel or ...
Nucleic acid types differ in the structure of the sugar in their nucleotides–DNA contains 2'-deoxyribose while RNA contains ribose (where the only difference is the presence of a hydroxyl group). Also, the nucleobases found in the two nucleic acid types are different: adenine , cytosine , and guanine are found in both RNA and DNA, while ...
Structure of CMCT used in RNA structure probing Mechanism of the reaction between uracil and carbodiimides [28] The carbodiimide moiety can also form covalent adducts at exposed nucleobases, which are uracil, and to a smaller extent guanine, upon nucleophilic attack by a deprotonated N. They react primarily with N3 of uracil and N1 of guanine ...
Three types of tetraloops are common in ribosomal RNA: GNRA, UNCG and CUUG, in which the N could be either uracil, adenine, cytosine, or guanine, and the R is either guanine or adenine. These three sequences form stable and conserved tetraloops that play an important role in structural stability and biological function of 16S rRNA.
These symbols are also valid for RNA, except with U (uracil) replacing T (thymine). [1] Apart from adenine (A), cytosine (C), guanine (G), thymine (T) and uracil (U), DNA and RNA also contain bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytidine (m5C).
A variety of glycosylases that recognize different types of damage exist, including oxidized or methylated bases, or uracil in DNA. The AP site can then be cleaved by an AP endonuclease, leaving 3'-hydroxyl and deoxyribose-5-phosphate termini (see DNA structure). In alternative fashion, bifunctional glycosylase-lyases can cleave the AP site ...