Search results
Results from the WOW.Com Content Network
A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
Graphs are usually represented visually by drawing a point or circle for every vertex, and drawing a line between two vertices if they are connected by an edge. If the graph is directed, the direction is indicated by drawing an arrow. If the graph is weighted, the weight is added on the arrow.
The dots are the vertices of the curve, each corresponding to a cusp on the evolute. In the geometry of plane curves, a vertex is a point of where the first derivative of curvature is zero. [1] This is typically a local maximum or minimum of curvature, [2] and some authors define a vertex to be more specifically a local extremum of curvature. [3]
The cube and regular octahedron are dual graphs of each other. According to Steinitz's theorem, every polyhedral graph (the graph formed by the vertices and edges of a three-dimensional convex polyhedron) must be planar and 3-vertex-connected, and every 3-vertex-connected planar graph comes from a convex polyhedron in this way.
From the handshaking lemma, a k-regular graph with odd k has an even number of vertices. A theorem by Nash-Williams says that every k ‑regular graph on 2k + 1 vertices has a Hamiltonian cycle. Let A be the adjacency matrix of a graph. Then the graph is regular if and only if = (, …,) is an eigenvector of A. [2]
There can be one arc between x and y or two arcs in opposite directions. [3] Semicomplete digraphs are simple digraphs where there is an arc between each pair of vertices. Every semicomplete digraph is a semicomplete multipartite digraph in a trivial way, with each vertex constituting a set of the partition. [4]