Search results
Results from the WOW.Com Content Network
Bertrand's box paradox: A paradox of conditional probability closely related to the Boy or Girl paradox. Bertrand's paradox: Different common-sense definitions of randomness give quite different results. Birthday paradox: In a random group of only 23 people, there is a better than 50/50 chance two of them have the same birthday.
This category contains paradoxes in mathematics, but excluding those concerning informal logic. "Paradox" here has the sense of "unintuitive result", rather than "apparent contradiction". "Paradox" here has the sense of "unintuitive result", rather than "apparent contradiction".
The problem is a paradox of the veridical type, because the solution is so counterintuitive it can seem absurd but is nevertheless demonstrably true. The Monty Hall problem is mathematically related closely to the earlier three prisoners problem and to the much older Bertrand's box paradox .
B. Russell: The principles of mathematics I, Cambridge 1903. B. Russell: On some difficulties in the theory of transfinite numbers and order types, Proc. London Math. Soc. (2) 4 (1907) 29-53. P. J. Cohen: Set Theory and the Continuum Hypothesis, Benjamin, New York 1966. S. Wagon: The Banach–Tarski Paradox, Cambridge University Press ...
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician Bertrand Russell in 1901. [ 1 ] [ 2 ] Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. [ 3 ]
Topics about Paradoxes in general should be placed in relevant topic categories. Pages in this category should be moved to subcategories where applicable. This category may require frequent maintenance to avoid becoming too large.
In set theory, Cantor's paradox states that there is no set of all cardinalities.This is derived from the theorem that there is no greatest cardinal number.In informal terms, the paradox is that the collection of all possible "infinite sizes" is not only infinite, but so infinitely large that its own infinite size cannot be any of the infinite sizes in the collection.
Constance Reid included the paradox in the 1955 first edition of her popular mathematics book From Zero to Infinity, but removed it from later editions. [12] Martin Gardner presented the paradox as a "fallacy" in his Scientific American column in 1958, including it with six other "astonishing assertions" whose purported proofs were also subtly ...