Search results
Results from the WOW.Com Content Network
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln( X ) has a normal distribution.
In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution.If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed.
The product of independent random variables X and Y may belong to the same family of distribution as X and Y: Bernoulli distribution and log-normal distribution. Example: If X 1 and X 2 are independent log-normal random variables with parameters (μ 1, σ 2 1) and (μ 2, σ 2 2) respectively, then X 1 X 2 is a log-normal random variable with ...
The skew normal distribution; Student's t-distribution, useful for estimating unknown means of Gaussian populations. The noncentral t-distribution; The skew t distribution; The Champernowne distribution; The type-1 Gumbel distribution; The Tracy–Widom distribution; The Voigt distribution, or Voigt profile, is the convolution of a normal ...
The scale parameter of the untruncated normal distribution must be positive because the distribution would not be normalizable otherwise. The doubly truncated normal distribution, on the other hand, can in principle have a negative scale parameter (which is different from the variance, see summary formulae), because no such integrability ...
If the payoff of a portfolio follows lognormal distribution, i.e. the random variable (+) follows normal distribution with the p.d.f. () = (), then the left-tail TVaR is equal to = (+) (()), where () is the standard normal c.d.f., so () is the standard normal quantile.
The lognormal's q-intervals are uniformly spaced and their width is independent of q; therefore if the log-normal is sufficiently skew, the q-interval and (q + 1)-interval do not overlap. The lognormal moments are called uniformly localized .
When μ = 0, the distribution of Y is a half-normal distribution. The random variable (Y/σ) 2 has a noncentral chi-squared distribution with 1 degree of freedom and noncentrality equal to (μ/σ) 2. The folded normal distribution can also be seen as the limit of the folded non-standardized t distribution as the degrees of freedom go to infinity.