enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    A first order reaction depends on the concentration of only one reactant (a unimolecular reaction). Other reactants can be present, but their concentration has no effect on the rate. The rate law for a first order reaction is [] = [], The unit of k is s-1. [18]

  3. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    As useful rules of thumb, a first-order reaction with a rate constant of 10 −4 s −1 will have a half-life (t 1/2) of approximately 2 hours. For a one-step process taking place at room temperature, the corresponding Gibbs free energy of activation (Δ G ‡ ) is approximately 23 kcal/mol.

  4. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    For a unimolecular reaction or step, the rate is proportional to the concentration of molecules of reactant, so the rate law is first order. For a bimolecular reaction or step, the number of collisions is proportional to the product of the two reactant concentrations, or second order. A termolecular step is predicted to be third order, but also ...

  5. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    After van 't Hoff, chemical kinetics dealt with the experimental determination of reaction rates from which rate laws and rate constants are derived. Relatively simple rate laws exist for zero order reactions (for which reaction rates are independent of concentration), first order reactions, and second order reactions, and can be derived for ...

  6. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    These reactions frequently have a pressure and temperature dependence region of transition between second and third order kinetics. [8] Catalytic reactions are often three-component, but in practice a complex of the starting materials is first formed and the rate-determining step is the reaction of this complex into products, not an ...

  7. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...

  8. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    the simple first-order rate law described in introductory textbooks. Under these conditions, the concentration of the nucleophile does not affect the rate of the reaction, and changing the nucleophile (e.g. from H 2 O to MeOH) does not affect the reaction rate, though the product is, of course, different. In this regime, the first step ...

  9. Lindemann mechanism - Wikipedia

    en.wikipedia.org/wiki/Lindemann_mechanism

    The steady-state rate equation is of mixed order and predicts that a unimolecular reaction can be of either first or second order, depending on which of the two terms in the denominator is larger. At sufficiently low pressures, k − 1 [ M ] ≪ k 2 {\displaystyle k_{-1}[{\ce {M}}]\ll k_{2}} so that d [ P ] / d t = k 1 [ A ] [ M ...