enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x , log e x , or sometimes, if the base e is implicit, simply log x .

  3. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics log x usually means to the natural logarithm (base e). [11] [12] In computer science and information theory, log often refers to binary logarithms (base 2). The following table lists common notations for logarithms to these bases.

  6. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    The first proof that the base of the natural logarithms, e, is transcendental dates from 1873. We will now follow the strategy of David Hilbert (1862–1943) who gave a simplification of the original proof of Charles Hermite. The idea is the following: Assume, for purpose of finding a contradiction, that e is algebraic.

  7. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    mathematical constant e; Properties; Natural logarithm; Exponential function; Applications; compound interest; Euler's identity; Euler's formula; half-lives. exponential growth and decay; Defining e; proof that e is irrational; representations of e; Lindemann–Weierstrass theorem; People; John Napier; Leonhard Euler; Related topics; Schanuel's ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions.