Search results
Results from the WOW.Com Content Network
A rigid body is usually considered as a continuous distribution of mass. In the study of special relativity, a perfectly rigid body does not exist; and objects can only be assumed to be rigid if they are not moving near the speed of light. In quantum mechanics, a rigid body is usually thought of as a collection of point masses.
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
In the 20th century, understanding the dynamics of globular cluster star systems became an important n-body problem. [2] The n-body problem in general relativity is considerably more difficult to solve due to additional factors like time and space distortions. The classical physical problem can be informally stated as the following:
Born rigidity is satisfied if the orthogonal spacetime distance between infinitesimally separated curves or worldlines is constant, [7] or equivalently, if the length of the rigid body in momentary co-moving inertial frames measured by standard measuring rods (i.e. the proper length) is constant and is therefore subjected to Lorentz contraction in relatively moving frames. [8]
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is
The COR is a property of a pair of objects in a collision, not a single object. If a given object collides with two different objects, each collision has its own COR. When a single object is described as having a given coefficient of restitution, as if it were an intrinsic property without reference to a second object, some assumptions have been made – for example that the collision is with ...
Simplified models of friction applied to fully rigid bodies are extremely useful for a basic understanding of physical principles, or when modelling systems for applications such as animation, robotics and bio-mechanics. However, they are only an approximation to a full elastic model requiring complex systems of partial differential equations.
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]