Search results
Results from the WOW.Com Content Network
In physics, a rigid body, also known as a rigid object, [2] is a solid body in which deformation is zero or negligible. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.
To illustrate the effect, consider a case in statics, a perfectly rigid body anchored on the ground subject to small lateral forces. In this example, a concentrated vertical load applied to the top of the structure and the weight of the structure itself are used to compute the ground reaction force and moment.
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
Euler angles – Description of the orientation of a rigid body; Geometric terms of location – Directions or positions relative to the shape and position of an object; Ship motions – Terms connected to the six degrees of freedom of motion; Aircraft principal axes – Principal directions in aviation
The rigid body's motion is entirely determined by the motion of its inertia ellipsoid, which is rigidly fixed to the rigid body like a coordinate frame. Its inertia ellipsoid rolls, without slipping, on the invariable plane , with the center of the ellipsoid a constant height above the plane.
The set of coordinates that define the position of a reference point and the orientation of a coordinate frame attached to a rigid body in three-dimensional space form its configuration space, often denoted () where represents the coordinates of the origin of the frame attached to the body, and () represents the rotation matrices that define the orientation of this frame relative to a ground ...
In classical mechanics, the rotation of a rigid body such as a spinning top under the influence of gravity is not, in general, an integrable problem.There are however three famous cases that are integrable, the Euler, the Lagrange, and the Kovalevskaya top, which are in fact the only integrable cases when the system is subject to holonomic constraints.
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler.