enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    Although there are 10 mm in 1 cm, there are 100 mm 2 in 1 cm 2. Calculation of the area of a square whose length and width are 1 metre would be: 1 metre × 1 metre = 1 m 2. and so, a rectangle with different sides (say length of 3 metres and width of 2 metres) would have an area in square units that can be calculated as: 3 metres × 2 metres ...

  3. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    A root rectangle is a rectangle in which the ratio of the longer side to the shorter is the square root of an integer, such as √ 2, √ 3, etc. [2] The root-2 rectangle (ACDK in Fig. 10) is constructed by extending two opposite sides of a square to the length of the square's diagonal. The root-3 rectangle is constructed by extending the two ...

  4. Dividing a square into similar rectangles - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_square_into...

    However, there are three distinct ways of partitioning a square into three similar rectangles: The trivial solution given by three congruent rectangles with aspect ratio 3:1. The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ratio 3:2.

  5. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Since x 2 represents the area of a square with side of length x, and bx represents the area of a rectangle with sides b and x, the process of completing the square can be viewed as visual manipulation of rectangles. Simple attempts to combine the x 2 and the bx rectangles into a larger square

  6. Circle packing in a square - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_a_square

    Solutions (not necessarily optimal) have been computed for every N ≤ 10,000. [2] Solutions up to N = 20 are shown below. [2] The obvious square packing is optimal for 1, 4, 9, 16, 25, and 36 circles (the six smallest square numbers), but ceases to be optimal for larger squares from 49 onwards.

  7. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The quotients formed by the area of these polygons divided by the square of the circle radius can be made arbitrarily close to π as the number of polygon sides becomes large, proving that the area inside the circle of radius r is πr 2, π being defined as the ratio of the circumference to the diameter (C/d).

  8. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The square gets sent to a rectangle circumscribing the ellipse. The ratio of the area of the circle to the square is π /4, which means the ratio of the ellipse to the rectangle is also π /4. Suppose a and b are the lengths of the major and minor axes of the ellipse. Since the area of the rectangle is ab, the area of the ellipse is π ab/4.

  9. Quadrature (geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrature_(geometry)

    The area of the surface of a sphere is equal to four times the area of the circle formed by a great circle of this sphere. The area of a segment of a parabola determined by a straight line cutting it is 4/3 the area of a triangle inscribed in this segment. For the proofs of these results, Archimedes used the method of exhaustion attributed to ...