enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass–luminosity relation - Wikipedia

    en.wikipedia.org/wiki/Massluminosity_relation

    The mass/luminosity relationship can also be used to determine the lifetime of stars by noting that lifetime is approximately proportional to M/L although one finds that more massive stars have shorter lifetimes than that which the M/L relationship predicts. A more sophisticated calculation factors in a star's loss of mass over time.

  3. Main sequence - Wikipedia

    en.wikipedia.org/wiki/Main_sequence

    The mass, radius, and luminosity of a star are closely interlinked, and their respective values can be approximated by three relations. First is the Stefan–Boltzmann law, which relates the luminosity L, the radius R and the surface temperature T eff. Second is the massluminosity relation, which relates the luminosity L and the mass M.

  4. Visual binary - Wikipedia

    en.wikipedia.org/wiki/Visual_binary

    From this measurement and the apparent magnitudes of both stars, the luminosities can be found, and by using the massluminosity relationship, the masses of each star. These masses are used to re-calculate the separation distance, and the process is repeated a number of times, with accuracies as high as 5% being achieved.

  5. Luminosity - Wikipedia

    en.wikipedia.org/wiki/Luminosity

    Luminosity is an absolute measure of radiated electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. [1] [2] In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects. [3] [4]

  6. Initial mass function - Wikipedia

    en.wikipedia.org/wiki/Initial_mass_function

    Since the magnitude of a star varies with its age, the determination of mass-luminosity relation should also take into account its age. For stars with masses above 0.7 M ☉, it takes more than 10 billion years for their magnitude to increase substantially. For low-mass stars with below 0.13 M ☉, it takes 5 × 10 8 years to reach main ...

  7. Stellar evolution - Wikipedia

    en.wikipedia.org/wiki/Stellar_evolution

    Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Hayashi track - Wikipedia

    en.wikipedia.org/wiki/Hayashi_track

    The Hayashi track is a luminosity–temperature relationship obeyed by infant stars of less than 3 M ☉ in the pre-main-sequence phase (PMS phase) of stellar evolution. It is named after Japanese astrophysicist Chushiro Hayashi.