Search results
Results from the WOW.Com Content Network
Through a variety of mechanisms, the removal of a hydride equivalent converts a primary or secondary alcohol to an aldehyde or ketone, respectively. The oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (gem-diol, R-CH(OH) 2) by reaction with water ...
Use of other oxidants instead of hydrogen peroxide can lead to carbonyl products rather than alcohols from alkenes. N-Methylmorpholine N-oxide with catalytic tetrapropylammonium perruthenate converts the alkylborane into a carbonyl, thus a ketone or aldehyde product depending on what other groups were attached to that carbon in the original ...
Usually, the crossed product is the major one. Any traces of the self-aldol product from the aldehyde may be disallowed by first preparing a mixture of a suitable base and the ketone and then adding the aldehyde slowly to the said reaction mixture. Using too concentrated base could lead to a competing Cannizzaro reaction. [12]
Azelaic acid and pelargonic acids are produced from ozonolysis of oleic acid on an industrial scale. An example is the ozonolysis of eugenol converting the terminal alkene to an aldehyde: [9] By controlling the reaction/workup conditions, unsymmetrical products can be generated from symmetrical alkenes: [10]
The use of aldehyde in the name comes from its history: aldehydes are more reactive than ketones, so that the reaction was discovered first with them. [2] [3] [4] The aldol reaction is paradigmatic in organic chemistry and one of the most common means of forming carbon–carbon bonds in organic chemistry.
In organic chemistry, aldol reactions are acid- or base-catalyzed reactions of aldehydes or ketones. Aldol addition or aldolization refers to the addition of an enolate or enolation as a nucleophile to a carbonyl moiety as an electrophile. This produces a β-hydroxyaldehyde or β-hydroxyketone.
The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide called a Wittig reagent.Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes.
Forming aldehydes from carboxylic acid derivatives is challenging because weaker reducing agents (NaBH 4) are often very slow at reducing esters and carboxylic acids, whereas stronger reducing agents (LiAlH 4) immediately reduce the formed aldehyde to an alcohol. [10] Conversion to thioester followed by Fukuyama reduction. In the Fukuyama ...