enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass–luminosity relation - Wikipedia

    en.wikipedia.org/wiki/Massluminosity_relation

    The mass/luminosity relationship can also be used to determine the lifetime of stars by noting that lifetime is approximately proportional to M/L although one finds that more massive stars have shorter lifetimes than that which the M/L relationship predicts. A more sophisticated calculation factors in a star's loss of mass over time.

  3. Initial mass function - Wikipedia

    en.wikipedia.org/wiki/Initial_mass_function

    The properties and evolution of a star are closely related to its mass, so the IMF is an important diagnostic tool for astronomers studying large quantities of stars. For example, the initial mass of a star is the primary factor of determining its colour, luminosity, radius, radiation spectrum, and quantity of materials and energy it emitted ...

  4. Galaxy color–magnitude diagram - Wikipedia

    en.wikipedia.org/wiki/Galaxy_color–magnitude...

    A mock-up of the galaxy color–magnitude diagram with three populations: the red sequence, the blue cloud, and the green valley. The galaxy color–magnitude diagram shows the relationship between absolute magnitude (a measure of luminosity) and mass of galaxies.

  5. Period-luminosity relation - Wikipedia

    en.wikipedia.org/wiki/Period-luminosity_relation

    In astronomy, a period-luminosity relation is a relationship linking the luminosity of pulsating variable stars with their pulsation period. The best-known relation is the direct proportionality law holding for Classical Cepheid variables , sometimes called the Leavitt Law .

  6. Stellar structure - Wikipedia

    en.wikipedia.org/wiki/Stellar_structure

    Typical boundary conditions set the values of the observable parameters appropriately at the surface (=) and center (=) of the star: () =, meaning the pressure at the surface of the star is zero; () =, there is no mass inside the center of the star, as required if the mass density remains finite; () =, the total mass of the star is the star's ...

  7. Stellar evolution - Wikipedia

    en.wikipedia.org/wiki/Stellar_evolution

    Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the ...

  8. Stellar dynamics - Wikipedia

    en.wikipedia.org/wiki/Stellar_dynamics

    For example, in the vicinity of a typical star the ratio of radiation-to-gravity force on a hydrogen atom or ion, = =,, hence radiation force is negligible in general, except perhaps around a luminous O-type star of mass , or around a black hole accreting gas at the Eddington limit so that its luminosity-to-mass ratio / is defined by =.

  9. Tully–Fisher relation - Wikipedia

    en.wikipedia.org/wiki/Tully–Fisher_relation

    The Tully–Fisher relation for spiral and lenticular galaxies. In astronomy, the Tully–Fisher relation (TFR) is a widely verified empirical relationship between the mass or intrinsic luminosity of a spiral galaxy and its asymptotic rotation velocity or emission line width. Since the observed brightness of a galaxy is distance-dependent, the ...