enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    For example, the determinant of the complex conjugate of a complex matrix (which is also the determinant of its conjugate transpose) is the complex conjugate of its determinant, and for integer matrices: the reduction modulo of the determinant of such a matrix is equal to the determinant of the matrix reduced modulo (the latter determinant ...

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Given the Euler's totient function φ(m), any set of φ(m) integers that are relatively prime to m and mutually incongruent under modulus m is called a reduced residue system modulo m. [5] The set {5, 15} from above, for example, is an instance of a reduced residue system modulo 4.

  4. Modular group - Wikipedia

    en.wikipedia.org/wiki/Modular_group

    It is easy to show that the trace of a matrix representing an element of Γ(N) cannot be −1, 0, or 1, so these subgroups are torsion-free groups. (There are other torsion-free subgroups.) The principal congruence subgroup of level 2, Γ(2), is also called the modular group Λ. Since PSL(2, Z/2Z) is isomorphic to S 3, Λ is a subgroup of index 6.

  5. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  6. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above. The extended Euclidean algorithm implies that 8⋅100 − 47⋅17 = 1, so R′ = 8. Multiply 12 by 8 to get 96 and reduce modulo 17 to get 11. This is the Montgomery form of 3, as expected.

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    One could use a calculator to compute 4 13; this comes out to 67,108,864. Taking this value modulo 497, the answer c is determined to be 445. Note that b is only one digit in length and that e is only two digits in length, but the value b e is 8 digits in length. In strong cryptography, b is often at least 1024 bits. [1]

  9. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.