enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Durand–Kerner method - Wikipedia

    en.wikipedia.org/wiki/Durand–Kerner_method

    In numerical analysis, the Weierstrass method or Durand–Kerner method, discovered by Karl Weierstrass in 1891 and rediscovered independently by Durand in 1960 and Kerner in 1966, is a root-finding algorithm for solving polynomial equations. [1] In other words, the method can be used to solve numerically the equation f(x) = 0,

  3. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    Elimination theory culminated with the work of Leopold Kronecker, and finally Macaulay, who introduced multivariate resultants and U-resultants, providing complete elimination methods for systems of polynomial equations, which are described in the chapter on Elimination theory in the first editions (1930) of van der Waerden's Moderne Algebra.

  4. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    The solutions of this system are obtained by solving the first univariate equation, substituting the solutions in the other equations, then solving the second equation which is now univariate, and so on. The definition of regular chains implies that the univariate equation obtained from f i has degree d i and thus that the system has d 1...

  5. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.

  6. Numerical algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Numerical_algebraic_geometry

    Solutions to polynomial systems computed using numerical algebraic geometric methods can be certified, meaning that the approximate solution is "correct".This can be achieved in several ways, either a priori using a certified tracker, [7] [8] or a posteriori by showing that the point is, say, in the basin of convergence for Newton's method.

  7. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    The main computer algebra systems (Maple, Mathematica, SageMath, PARI/GP) have each a variant of this method as the default algorithm for the real roots of a polynomial. The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in ...

  8. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.

  9. Jenkins–Traub algorithm - Wikipedia

    en.wikipedia.org/wiki/Jenkins–Traub_algorithm

    In the algorithm, proper roots are found one by one and generally in increasing size. After each root is found, the polynomial is deflated by dividing off the corresponding linear factor. Indeed, the factorization of the polynomial into the linear factor and the remaining deflated polynomial is already a result of the root-finding procedure.