Ad
related to: solving for x by factoring
Search results
Results from the WOW.Com Content Network
Conversely, the factor theorem asserts that, if r is a root of P(x) = 0, then P(x) may be factored as = (), where Q(x) is the quotient of Euclidean division of P(x) = 0 by the linear (degree one) factor x – r. If the coefficients of P(x) are real or complex numbers, the fundamental theorem of algebra asserts that P(x) has a real or complex ...
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).
If an equation P(x) = 0 of degree n has a rational root α, the associated polynomial can be factored to give the form P(X) = (X – α)Q(X) (by dividing P(X) by X – α or by writing P(X) – P(α) as a linear combination of terms of the form X k – α k, and factoring out X – α. Solving P(x) = 0 thus reduces to solving the degree n – 1 ...
If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q(x) is simply the quotient obtained from the division process; since r is known to be a root of P(x), it is known that the remainder must be zero.
Let f ∈ F q [x] of degree n be the polynomial to be factored. Algorithm Distinct-degree factorization(DDF) Input: A monic square-free polynomial f ∈ F q [x] Output: The set of all pairs (g, d), such that f has an irreducible factor of degree d and g is the product of all monic irreducible factors of f of degree d.
Ad
related to: solving for x by factoring