Search results
Results from the WOW.Com Content Network
Typically aqueous sodium hydroxide solutions are used. [1] [2] It is an important type of alkaline hydrolysis. When the carboxylate is long chain, its salt is called a soap. The saponification of ethyl acetate gives sodium acetate and ethanol: C 2 H 5 O 2 CCH 3 + NaOH → C 2 H 5 OH + NaO 2 CCH 3
More conveniently, the salt can be made by reacting nitric acid with aluminium hydroxide. Aluminium nitrate may also be prepared a metathesis reaction between aluminium sulfate and a nitrate salt with a suitable cation such as barium, strontium, calcium, silver, or lead. e.g. Al 2 (SO 4) 3 + 3 Ba(NO 3) 2 → 2 Al(NO 3) 3 + 3 BaSO 4.
The halide salt is prepared by the reaction of triethylamine and an ethyl halide: Et 3 N + EtX → Et 4 N + X −. This method works well for the preparation of tetraethylammonium iodide (where X = I). [1] Most tetraethylammonium salts are prepared by salt metathesis reactions.
Tetrasodium EDTA is the salt resulting from the neutralization of ethylenediaminetetraacetic acid with four equivalents of sodium hydroxide (or an equivalent sodium base). It is a white solid that is highly soluble in water. Commercial samples are often hydrated, e.g. Na 4 EDTA. 4H 2 O. The properties of solutions produced from the anhydrous ...
Ethyl acetate (systematically ethyl ethanoate, commonly abbreviated EtOAc, ETAC or EA) is the organic compound with the formula CH 3 CO 2 CH 2 CH 3, simplified to C 4 H 8 O 2.This flammable, colorless liquid has a characteristic sweet smell (similar to pear drops) and is used in glues, nail polish removers, and the decaffeination process of tea and coffee.
The reduction of nitro compounds are chemical reactions of wide interest in organic chemistry. The conversion can be effected by many reagents. The nitro group was one of the first functional groups to be reduced. Alkyl and aryl nitro compounds behave differently.
The S N 2 reaction between sodium acetate and bromoethane. The products are ethyl acetate and sodium bromide. The nucleophilicity of carboxylate ions is much weaker than that of hydroxide and alkoxide ions, but stronger than that of halide anions (in a polar aprotic solvent, though there are other effects such as solubility of the ion).
It can be prepared by treating a potassium-containing base such as potassium hydroxide or potassium carbonate with acetic acid: CH 3 COOH + KOH → CH 3 COOK + H 2 O. This sort of reaction is known as an acid-base neutralization reaction. At saturation, the sesquihydrate in water solution (CH 3 COOK·1½H 2 O) begins to form semihydrate at 41.3 ...