Search results
Results from the WOW.Com Content Network
Magnetization also describes how a material responds to an applied magnetic field as well as the way the material changes the magnetic field, and can be used to calculate the forces that result from those interactions.
It is the ratio of magnetization M (magnetic moment per unit volume) to the applied magnetic field intensity H. This allows a simple classification, into two categories, of most materials' responses to an applied magnetic field: an alignment with the magnetic field, χ > 0 , called paramagnetism , or an alignment against the field, χ < 0 ...
Ampèrian loop model: In the Ampèrian loop model, all magnetization is due to the effect of microscopic, or atomic, circular bound currents, also called Ampèrian currents throughout the material. The net effect of these microscopic bound currents is to make the magnet behave as if there is a macroscopic electric current flowing in loops in ...
This effect is expressed on a macroscopic scale in the Einstein–de Haas effect, or "rotation by magnetization", and its inverse, the Barnett effect, or "magnetization by rotation". [1] Further, a torque applied to a relatively isolated magnetic dipole such as an atomic nucleus can cause it to precess (rotate about the axis of the applied field).
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Seen in some magnetic materials, saturation is the state reached when an increase in applied external magnetic field H cannot increase the magnetization of the material further, so the total magnetic flux density B more or less levels off. (Though, magnetization continues to increase very slowly with the field due to paramagnetism.)
Thus the total magnetization will drop to zero when the applied field is removed. Even in the presence of the field, there is only a small induced magnetization because only a small fraction of the spins will be oriented by the field. This fraction is proportional to the field strength and this explains the linear dependency.
The magnetization vector field M represents how strongly a region of material is magnetized. It is defined as the net magnetic dipole moment per unit volume of that region. The magnetization of a uniform magnet is therefore a material constant, equal to the magnetic moment m of the magnet divided by its volume.