Search results
Results from the WOW.Com Content Network
In statistics, Hoeffding's test of independence, named after Wassily Hoeffding, is a test based on the population measure of deviation from independence = where is the joint distribution function of two random variables, and and are their marginal distribution functions.
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
The characteristic function of a real-valued random variable always exists, since it is an integral of a bounded continuous function over a space whose measure is finite. A characteristic function is uniformly continuous on the entire space. It is non-vanishing in a region around zero: φ(0) = 1. It is bounded: | φ(t) | ≤ 1.
In mathematics, in particular in measure theory, there are different notions of distribution function and it is important to understand the context in which they are used (properties of functions, or properties of measures). Distribution functions (in the sense of measure theory) are a generalization of distribution functions (in the sense of ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.
In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known ...
The f-divergences are probably the best-known way to measure dissimilarity of probability distributions. It has been shown [ 5 ] : sec. 2 that the only functions which are both IPMs and f -divergences are of the form c TV ( P , Q ) {\displaystyle c\,\operatorname {TV} (P,Q)} , where c ∈ [ 0 , ∞ ] {\displaystyle c\in [0,\infty ]} and TV ...