enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ocean deoxygenation - Wikipedia

    en.wikipedia.org/wiki/Ocean_deoxygenation

    Secondly, ocean deoxygenation occurs also in the open ocean. In that part of the ocean, there is nowadays an ongoing reduction in oxygen levels. As a result, the naturally occurring low oxygen areas (so called oxygen minimum zones (OMZs)) are now expanding slowly. [4] This expansion is happening as a consequence of human caused climate change.

  3. Hypoxia (environmental) - Wikipedia

    en.wikipedia.org/wiki/Hypoxia_(environmental)

    Many organisms require hypoxic conditions. Oxygen is poisonous to anaerobic bacteria for example. [3] Oxygen depletion is typically expressed as a percentage of the oxygen that would dissolve in the water at the prevailing temperature and salinity. A system with low concentration—in the range between 1 and 30% saturation—is called hypoxic ...

  4. Oxygen minimum zone - Wikipedia

    en.wikipedia.org/wiki/Oxygen_minimum_zone

    In OMZs oxygen concentration drops to levels <10 nM at the base of the oxycline and can remain anoxic for over 700 m depth. [7] This lack of oxygen can be reinforced or increased due to physical processes changing oxygen supply such as eddy-driven advection, [7] sluggish ventilation, [8] increases in ocean stratification, and increases in ocean temperature which reduces oxygen solubility.

  5. Great Oxidation Event - Wikipedia

    en.wikipedia.org/wiki/Great_Oxidation_Event

    Stage 3 (1.85–0.85 Ga): O 2 starts to gas out of the oceans, but is absorbed by land surfaces. No significant change in oxygen level. Stages 4 and 5 (0.85 Ga – present): Other O 2 reservoirs filled; gas accumulates in atmosphere. [1] Stage 4 is known as the neoproterozoic oxygenation event.

  6. Aquatic respiration - Wikipedia

    en.wikipedia.org/wiki/Aquatic_respiration

    Countercurrent flow occurs when deoxygenated blood moves through the gill in one direction while oxygenated water moves through the gill in the opposite direction. This mechanism maintains the concentration gradient thus increasing the efficiency of the respiration process as well and prevents the oxygen levels from reaching an equilibrium ...

  7. Geological history of oxygen - Wikipedia

    en.wikipedia.org/wiki/Geological_history_of_oxygen

    Stage 3 (1.85–0.85 Ga): O 2 starts to gas out of the oceans, but is absorbed by land surfaces and formation of ozone layer. Stages 4 and 5 (0.85 Ga–present): O 2 sinks filled, the gas accumulates. [1] Although oxygen is the most abundant element in Earth's crust, due to its high reactivity it mostly exists in compound forms such as water ...

  8. Marine biogeochemical cycles - Wikipedia

    en.wikipedia.org/wiki/Marine_biogeochemical_cycles

    [131]: 646 Estimates of the amount of water in the mantle range from 1 ⁄ 4 to 4 times the water in the ocean. [131]: 630–634 The deep carbon cycle is the movement of carbon through the Earth's mantle and core. It forms part of the carbon cycle and is intimately connected to the movement of carbon in the Earth's surface and atmosphere. By ...

  9. Neoproterozoic oxygenation event - Wikipedia

    en.wikipedia.org/wiki/Neoproterozoic_oxygenation...

    Stage 3 (1.85–0.85 Ga): O 2 starts to gas out of the oceans, but is absorbed by land surfaces. No significant change in oxygen level. Stages 4 and 5 (0.85 Ga – present): Other O 2 reservoirs filled; gas accumulates in atmosphere. [1] Stage 4 is known as the neoproterozoic oxygenation event.