Search results
Results from the WOW.Com Content Network
The degree of a group of permutations of a finite set is the number of elements in the set. The order of a group (of any type) is the number of elements (cardinality) in the group. By Lagrange's theorem, the order of any finite permutation group of degree n must divide n! since n-factorial is the order of the symmetric group S n.
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
In mathematics and group theory, a block system for the action of a group G on a set X is a partition of X that is G-invariant. In terms of the associated equivalence relation on X, G-invariance means that x ~ y implies gx ~ gy. for all g ∈ G and all x, y ∈ X. The action of G on X induces a natural action of G on any block system for X.
If is a permutation group of degree , then the permutation representation of is the linear representation of ρ : G → GL n ( K ) {\displaystyle \rho \colon G\to \operatorname {GL} _{n}(K)} which maps g ∈ G {\displaystyle g\in G} to the corresponding permutation matrix (here K {\displaystyle K} is an arbitrary field ). [ 2 ]
The simplest example is the Klein four-group acting on the vertices of a square, which preserves the partition into diagonals. On the other hand, if a permutation group preserves only trivial partitions, it is transitive, except in the case of the trivial group acting on a 2-element set.
Permutations without repetition on the left, with repetition to their right. If M is a finite multiset, then a multiset permutation is an ordered arrangement of elements of M in which each element appears a number of times equal exactly to its multiplicity in M. An anagram of a word having some repeated letters is an example of a multiset ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
It is common for the point-stabilizer of a rank-3 permutation group acting on one of the orbits to be a rank-3 permutation group. This gives several "chains" of rank-3 permutation groups, such as the Suzuki chain and the chain ending with the Fischer groups. Some unusual rank-3 permutation groups (many from (Liebeck & Saxl 1986)) are listed below.