Search results
Results from the WOW.Com Content Network
The table below are examples, and for the same caliber different bullet weights can be used. Bullet velocity depends, along with other factors, on bullet weight, powder types used and barrel length for the particular firearm. Some cartridges not suitable for competition are included for reference.
For projectiles in unpowered flight, its velocity is highest at leaving the muzzle and drops off steadily because of air resistance.Projectiles traveling less than the speed of sound (about 340 m/s (1,100 ft/s) in dry air at sea level) are subsonic, while those traveling faster are supersonic and thus can travel a substantial distance and even hit a target before a nearby observer hears the ...
The Taylor KO factor multiplies bullet mass (measured in grains) by muzzle velocity (measured in feet per second) by bullet diameter (measured in inches) and then divides the product by 7,000, converting the value from grains to pounds and giving a numerical value from 0 to ~150 for normal hunting cartridges.
Siacci found that within a low-velocity restricted zone, projectiles of similar shape, and velocity in the same air density behave similarly; or . Siacci used the variable for ballistic coefficient. Meaning, air density is the generally the same for flat-fire trajectories, thus sectional density is equal to the ballistic coefficient and air ...
There is wide variation in commercial ammunition. A 180 gr (12 g) bullet fired from .357 Magnum handgun can achieve a muzzle energy of 580 ft⋅lbf (790 J). A 110 gr (7.1 g) bullet fired from the same gun might only achieve 400 ft⋅lbf (540 J) of muzzle energy, depending upon the manufacturer of the cartridge.
Sectional density is a very important aspect of a projectile or bullet, and is for a round projectile like a bullet the ratio of frontal surface area (half the bullet diameter squared, times pi) to bullet mass. Since, for a given bullet shape, frontal surface increases as the square of the calibre, and mass increases as the cube of the diameter ...
Penetrator weight: Muzzle velocity: 1660 m/s; Muzzle energy: ... Identical to 3BM69 in dimensions, the difference being that the projectile is made out of tungsten.
Bullet parts: 1 metal jacket, 2 lead core, 3 steel penetrator. Terminal ballistics is a sub-field of ballistics concerned with the behavior and effects of a projectile when it hits and transfers its energy to a target. Bullet design (as well as the velocity of impact) largely determines the effectiveness of penetration. [1]