enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ranking - Wikipedia

    en.wikipedia.org/wiki/Ranking

    In dense ranking, items that compare equally receive the same ranking number, and the next items receive the immediately following ranking number. Equivalently, each item's ranking number is 1 plus the number of items ranked above it that are distinct with respect to the ranking order.

  3. Sparse matrix - Wikipedia

    en.wikipedia.org/wiki/Sparse_matrix

    The array ROW_INDEX is of length m + 1 and encodes the index in V and COL_INDEX where the given row starts. This is equivalent to ROW_INDEX[j] encoding the total number of nonzeros above row j. The last element is NNZ, i.e., the fictitious index in V immediately after the last valid index NNZ − 1. [8]

  4. Ranking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Ranking_(statistics)

    In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted.. For example, if the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively.

  5. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    In practice, we can construct one specific rank factorization as follows: we can compute , the reduced row echelon form of .Then is obtained by removing from all non-pivot columns (which can be determined by looking for columns in which do not contain a pivot), and is obtained by eliminating any all-zero rows of .

  6. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.

  7. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    Row operations do not change the row space (hence do not change the row rank), and, being invertible, map the column space to an isomorphic space (hence do not change the column rank). Once in row echelon form, the rank is clearly the same for both row rank and column rank, and equals the number of pivots (or basic columns) and also the number ...

  8. Matrix completion - Wikipedia

    en.wikipedia.org/wiki/Matrix_completion

    The high rank matrix completion in general is NP-Hard. However, with certain assumptions, some incomplete high rank matrix or even full rank matrix can be completed. Eriksson, Balzano and Nowak [10] have considered the problem of completing a matrix with the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces.

  9. Tensor rank decomposition - Wikipedia

    en.wikipedia.org/wiki/Tensor_rank_decomposition

    In multilinear algebra, the tensor rank decomposition [1] or rank-R decomposition is the decomposition of a tensor as a sum of R rank-1 tensors, where R is minimal. Computing this decomposition is an open problem.