Search results
Results from the WOW.Com Content Network
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage.
Varying the current in the control winding moves the operating point up and down on the saturation curve, controlling the alternating current through the inductor. These are used in variable fluorescent light ballasts, and power control systems. [11] Saturation is also exploited in fluxgate magnetometers and fluxgate compasses.
Some models base the collector current correction factor on the collector–base voltage V CB (as described in base-width modulation) instead of the collector–emitter voltage V CE. [3] Using V CB may be more physically plausible, in agreement with the physical origin of the effect, which is a widening of the collector–base depletion layer ...
Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3] He calls it "a theoretical rectification formula giving the maximum rectification", with a footnote referencing a paper by Carl Wagner , Physikalische Zeitschrift 32 , pp ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
For a surface biased strongly negative so that it draws the ion saturation current, the approximation is very good. It is customary, although not strictly necessary, to further simplify the equation by assuming that 2 χ / M 2 {\displaystyle 2\chi /{\mathfrak {M}}^{2}} is much larger than unity.
This current dependency is not supported by the characteristics shown in the diagram above a certain applied voltage. This is the saturation region, and the JFET is normally operated in this constant-current region where device current is virtually unaffected by drain-source voltage. The JFET shares this constant-current characteristic with ...