enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  4. First-order second-moment method - Wikipedia

    en.wikipedia.org/wiki/First-order_second-moment...

    For the second-order approximations of the third central moment as well as for the derivation of all higher-order approximations see Appendix D of Ref. [3] Taking into account the quadratic terms of the Taylor series and the third moments of the input variables is referred to as second-order third-moment method. [4]

  5. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    This class includes Hermite–Obreschkoff methods and Fehlberg methods, as well as methods like the Parker–Sochacki method [17] or Bychkov–Scherbakov method, which compute the coefficients of the Taylor series of the solution y recursively. methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ...

  7. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    This formula can be obtained by Taylor series expansion: (+) = + ′ ()! ″ ()! () +. The complex-step derivative formula is only valid for calculating first-order derivatives. A generalization of the above for calculating derivatives of any order employs multicomplex numbers , resulting in multicomplex derivatives.

  8. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    In the case that a = 0, the series is also called a Maclaurin series. A Taylor series of f about point a may diverge, converge at only the point a, converge for all x such that | | < (the largest such R for which convergence is guaranteed is called the radius of convergence), or converge on the entire real line. Even a converging Taylor series ...

  9. Linearization - Wikipedia

    en.wikipedia.org/wiki/Linearization

    The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. [1]