enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    Second-order Taylor series approximation (in orange) of a function f (x,y) = e x ln(1 + y) around the origin. In order to compute a second-order Taylor series expansion around point (a, b) = (0, 0) of the function (,) = ⁡ (+), one first computes all the necessary partial derivatives:

  3. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.

  4. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    The above is obtained using a second order approximation, following the method used in estimating the first moment. It will be a poor approximation in cases where () is highly non-linear. This is a special case of the delta method.

  5. Order of approximation - Wikipedia

    en.wikipedia.org/wiki/Order_of_approximation

    For example, if a quantity is constant within the whole interval, approximating it with a second-order Taylor series will not increase the accuracy. In the case of a smooth function , the n th-order approximation is a polynomial of degree n , which is obtained by truncating the Taylor series to this degree.

  6. First-order second-moment method - Wikipedia

    en.wikipedia.org/wiki/First-order_second-moment...

    For the second-order approximations of the third central moment as well as for the derivation of all higher-order approximations see Appendix D of Ref. [3] Taking into account the quadratic terms of the Taylor series and the third moments of the input variables is referred to as second-order third-moment method. [4]

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...

  8. Delta method - Wikipedia

    en.wikipedia.org/wiki/Delta_method

    The intuition of the delta method is that any such g function, in a "small enough" range of the function, can be approximated via a first order Taylor series (which is basically a linear function). If the random variable is roughly normal then a linear transformation of it is also normal. Small range can be achieved when approximating the ...

  9. Padé approximant - Wikipedia

    en.wikipedia.org/wiki/Padé_approximant

    For given x, Padé approximants can be computed by Wynn's epsilon algorithm [2] and also other sequence transformations [3] from the partial sums = + + + + of the Taylor series of f, i.e., we have = ()!. f can also be a formal power series, and, hence, Padé approximants can also be applied to the summation of divergent series.