Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
Dimensionless quantities can be obtained as ratios of quantities that are not dimensionless, but whose dimensions cancel out in the mathematical operation. [19] [20] Examples of quotients of dimension one include calculating slopes or some unit conversion factors.
Download as PDF; Printable version ... Dimensionless numbers of fluid ... Dimensionless numbers of mechanics (4 P) P. Probability (11 C, 6 P) Q. Dimensionless ...
Derived quantities can be expressed in terms of the base quantities. Note that neither the names nor the symbols used for the physical quantities are international standards. Some quantities are known as several different names such as the magnetic B-field which is known as the magnetic flux density , the magnetic induction or simply as the ...
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
In aerodynamics for example, if one considers one particular airfoil, the Reynolds number value of the laminar–turbulent transition is one relevant dimensionless number of the problem. However, it is strictly related to the particular problem: for example, it is related to the airfoil being considered and also to the type of fluid in which it ...
Dimensionless quantities, or quantities of dimension one, [2] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [3] [4] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units.
For example, if x is a quantity, then x c is the characteristic unit used to scale it. As an illustrative example, consider a first order differential equation with constant coefficients: + = (). In this equation the independent variable here is t, and the dependent variable is x.