enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...

  3. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    Kutta–Joukowski theorem relates lift to circulation much like the Magnus effect relates side force (called Magnus force) to rotation. [3] However, the circulation here is not induced by rotation of the airfoil. The fluid flow in the presence of the airfoil can be considered to be the superposition of a

  4. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    The blade itself is the source of these thrust and torque forces. The force response of the blades is governed by the geometry of the flow, or better known as the angle of attack. Refer to the Airfoil article for more information on how airfoils create lift and drag forces at various angles of attack. This interplay between the far field ...

  5. Pitching moment - Wikipedia

    en.wikipedia.org/wiki/Pitching_moment

    Pitching moment changes pitch angle A graph showing coefficient of pitching moment with respect to angle of attack for an airplane.. In aerodynamics, the pitching moment on an airfoil is the moment (or torque) produced by the aerodynamic force on the airfoil if that aerodynamic force is considered to be applied, not at the center of pressure, but at the aerodynamic center of the airfoil.

  6. Blade element momentum theory - Wikipedia

    en.wikipedia.org/wiki/Blade_Element_Momentum_Theory

    Consider fluid flow around an airfoil. The flow of the fluid around the airfoil gives rise to lift and drag forces. By definition, lift is the force that acts on the airfoil normal to the apparent fluid flow speed seen by the airfoil. Drag is the forces that acts tangential to the apparent fluid flow speed seen by the airfoil.

  7. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  8. Blade solidity - Wikipedia

    en.wikipedia.org/wiki/Blade_solidity

    In an airfoil, the mean line curvature is designed to change the flow direction, the vane thickness is for strength and the streamlined shape is to delay the onset of boundary layer separation. Taking all the design factors of an airfoil , the resulting forces of lift and drag can be expressed in terms of lift and drag coefficient.

  9. Aerodynamic center - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_center

    The distribution of forces on a wing in flight are both complex and varying. This image shows the forces for two typical airfoils, a symmetrical design on the left, and an asymmetrical design more typical of low-speed designs on the right. This diagram shows only the lift components; the similar drag considerations are not illustrated.