Search results
Results from the WOW.Com Content Network
A segment can be extended by allocating another memory page and adding it to the segment's page table. An implementation of virtual memory on a system using segmentation with paging usually only moves individual pages back and forth between main memory and secondary storage, similar to a paged non-segmented system. Pages of the segment can be ...
Similar to paged memory, but paging is achieved by the implicit addition of two relatively shifted registers: segment:offset; Variable page boundaries, more efficient and flexible than the paged memory model; Quite complex and awkward from a programmer's point of view; More difficult for compilers; Pages can overlap / poor resource protection ...
In computer operating systems, memory paging (or swapping on some Unix-like systems) is a memory management scheme by which a computer stores and retrieves data from secondary storage [a] for use in main memory. [1] In this scheme, the operating system retrieves data from secondary storage in same-size blocks called pages.
It is the smallest unit of data for memory management in an operating system that uses virtual memory. Similarly, a page frame is the smallest fixed-length contiguous block of physical memory into which memory pages are mapped by the operating system. [1] [2] [3]
The Multics operating system is probably the best known system implementing segmented memory. Multics segments are subdivisions of the computer's physical memory of up to 256 pages, each page being 1K 36-bit words in size, resulting in a maximum segment size of 1MiB (with 9-bit bytes, as used in Multics). A process could have up to 4046 segments.
A 68451 MMU, which could be used with the Motorola 68010. A memory management unit (MMU), sometimes called paged memory management unit (PMMU), [1] is a computer hardware unit that examines all memory references on the memory bus, translating these requests, known as virtual memory addresses, into physical addresses in main memory.
The page walk is time-consuming when compared to the processor speed, as it involves reading the contents of multiple memory locations and using them to compute the physical address. After the physical address is determined by the page walk, the virtual address to physical address mapping is entered into the TLB.
In real mode or V86 mode, the size of a segment can range from 1 byte up to 65,536 bytes (using 16-bit offsets). The 16-bit segment selector in the segment register is interpreted as the most significant 16 bits of a linear 20-bit address, called a segment address, of which the remaining four least significant bits are all zeros.