Search results
Results from the WOW.Com Content Network
The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple. [ 7 ] Also useful in the quantum mechanics of multiparticle systems, the general Pauli group G n is defined to consist of all n -fold tensor products of Pauli matrices.
the matrix exponential reduces to a plain product of the exponentials of the two respective pieces. This is a formula often used in physics, as it amounts to the analog of Euler's formula for Pauli spin matrices, that is rotations of the doublet representation of the group SU(2).
If and are matrices, one can compute := using the power series for the exponential and logarithm, with convergence of the series if and are sufficiently small. It is natural to collect together all terms where the total degree in X {\displaystyle X} and Y {\displaystyle Y} equals a fixed number k {\displaystyle k} , giving an expression z k ...
The matrix exponential of a Pauli matrix ... If a function is a product of gates, = , the unitary inverse of the ...
The Pauli matrices abide by the physicists' convention for Lie algebras. In that convention, Lie algebra elements are multiplied by i, the exponential map (below) is defined with an extra factor of i in the exponent and the structure constants remain the same, but the definition of them acquires a factor of i.
The clock matrix amounts to the exponential of position in a "clock" of hours, and the shift matrix is just the translation operator in that cyclic vector space, so the exponential of the momentum. They are (finite-dimensional) representations of the corresponding elements of the Weyl-Heisenberg group on a d {\displaystyle d} -dimensional ...
The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...
The ordinary exponential function of mathematical analysis is a special case of the exponential map when is the multiplicative group of positive real numbers (whose Lie algebra is the additive group of all real numbers). The exponential map of a Lie group satisfies many properties analogous to those of the ordinary exponential function, however ...