enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skip list - Wikipedia

    en.wikipedia.org/wiki/Skip_list

    A skip list does not provide the same absolute worst-case performance guarantees as more traditional balanced tree data structures, because it is always possible (though with very low probability [5]) that the coin-flips used to build the skip list will produce a badly balanced structure. However, they work well in practice, and the randomized ...

  3. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items. Self-balancing binary search trees provide efficient implementations for mutable ordered lists , and can be used for other abstract data structures such as associative arrays , priority queues and sets .

  4. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    Based on the new functions for union, intersection or difference, either one key or multiple keys can be inserted to or deleted from the weight-balanced tree. Since Split and Union call Join but do not deal with the balancing criteria of weight-balanced trees directly, such an implementation is usually called the join-based algorithms.

  5. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    For lookup-intensive applications, AVL trees are faster than red–black trees because they are more strictly balanced. [4] Similar to red–black trees, AVL trees are height-balanced. Both are, in general, neither weight-balanced nor μ {\displaystyle \mu } -balanced for any μ ≤ 1 2 {\displaystyle \mu \leq {\tfrac {1}{2}}} ; [ 5 ] that is ...

  6. Interval tree - Wikipedia

    en.wikipedia.org/wiki/Interval_tree

    For example, when testing if the given interval [40 ,60) overlaps the intervals in the tree shown above, we see that it does not overlap the interval [20, 36) in the root, but since the root's low value (20) is less than the sought high value (60), we must search the right subtree. The left subtree's maximum high of 41 exceeds the sought low ...

  7. Optimal binary search tree - Wikipedia

    en.wikipedia.org/wiki/Optimal_binary_search_tree

    Unlike splay trees and tango trees, Iacono's data structure is not known to be implementable in constant time per access sequence step, so even if it is dynamically optimal, it could still be slower than other search tree data structures by a non-constant factor. The interleave lower bound is an asymptotic lower bound on dynamic optimality.

  8. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A binary tree is a rooted tree that is also an ordered tree (a.k.a. plane tree) in which every node has at most two children. A rooted tree naturally imparts a notion of levels (distance from the root); thus, for every node, a notion of children may be defined as the nodes connected to it a level below.

  9. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    A B-tree of depth n+1 can hold about U times as many items as a B-tree of depth n, but the cost of search, insert, and delete operations grows with the depth of the tree. As with any balanced tree, the cost grows much more slowly than the number of elements.