Search results
Results from the WOW.Com Content Network
A frequency distribution shows a summarized grouping of data divided into mutually exclusive classes and the number of occurrences in a class. It is a way of showing unorganized data notably to show results of an election, income of people for a certain region, sales of a product within a certain period, student loan amounts of graduates, etc.
This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. ∑ i = 1 N O i = 20 {\displaystyle \sum _{i=1}^{N}O_{i}=20\,} The following is Yates's corrected version of Pearson's chi-squared statistics :
The example above is the simplest kind of contingency table, a table in which each variable has only two levels; this is called a 2 × 2 contingency table. In principle, any number of rows and columns may be used. There may also be more than two variables, but higher order contingency tables are difficult to represent visually.
Another method of grouping the data is to use some qualitative characteristics instead of numerical intervals. For example, suppose in the above example, there are three types of students: 1) Below normal, if the response time is 5 to 14 seconds, 2) normal if it is between 15 and 24 seconds, and 3) above normal if it is 25 seconds or more, then the grouped data looks like:
In computing, the count–min sketch (CM sketch) is a probabilistic data structure that serves as a frequency table of events in a stream of data.It uses hash functions to map events to frequencies, but unlike a hash table uses only sub-linear space, at the expense of overcounting some events due to collisions.
The coefficient of coincidence is calculated by dividing the actual frequency of double recombinants by this expected frequency: [1] c.o.c. = actual double recombinant frequency / expected double recombinant frequency. Interference is then defined as follows: [1] interference = 1 − c.o.c.
Cumulative frequency distribution, adapted cumulative probability distribution, and confidence intervals. Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called frequency of non-exceedance.
The points plotted as part of an ogive are the upper class limit and the corresponding cumulative absolute frequency [2] or cumulative relative frequency. The ogive for the normal distribution (on one side of the mean) resembles (one side of) an Arabesque or ogival arch, which is likely the origin of its name.