enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    Photosystem I (PSI, or plastocyanin–ferredoxin oxidoreductase) is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin.

  3. UV coloration in flowers - Wikipedia

    en.wikipedia.org/wiki/UV_coloration_in_flowers

    It was adapted by flowers to orient pollinators leading to an example of co-evolution. [8] UV light allows them to broadcast a guide to where their pollen is located. [4] Due to unique life characteristics and morphology of flowers, pollinators are more effective at taking the pollen and spreading it to other flowers of the same species. [3]

  4. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).

  5. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    Plants absorb light primarily using the pigment chlorophyll. The green part of the light spectrum is not absorbed but is reflected, which is the reason that most plants have a green color. Besides chlorophyll, plants also use pigments such as carotenes and xanthophylls. [25]

  6. Eyespot apparatus - Wikipedia

    en.wikipedia.org/wiki/Eyespot_apparatus

    Schematic representation of a Euglena cell with red eyespot (9) Schematic representation of a Chlamydomonas cell with chloroplast eyespot (4). The eyespot apparatus (or stigma) is a photoreceptive organelle found in the flagellate or (motile) cells of green algae and other unicellular photosynthetic organisms such as euglenids.

  7. Structural coloration - Wikipedia

    en.wikipedia.org/wiki/Structural_coloration

    The brilliant iridescent colors of the peacock's tail feathers are created by structural coloration, as first noted by Isaac Newton and Robert Hooke.. Structural coloration in animals, and a few plants, is the production of colour by microscopically structured surfaces fine enough to interfere with visible light instead of pigments, although some structural coloration occurs in combination ...

  8. Photosynthetic pigment - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_pigment

    Like plants, the cyanobacteria use water as an electron donor for photosynthesis and therefore liberate oxygen; they also use chlorophyll as a pigment.In addition, most cyanobacteria use phycobiliproteins, water-soluble pigments which occur in the cytoplasm of the chloroplast, to capture light energy and pass it on to the chlorophylls.

  9. Biological pigment - Wikipedia

    en.wikipedia.org/wiki/Biological_pigment

    It is the presence and relative abundance of chlorophyll that gives plants their green color. All land plants and green algae possess two forms of this pigment: chlorophyll a and chlorophyll b. Kelps, diatoms, and other photosynthetic heterokonts contain chlorophyll c instead of b, while red algae possess only chlorophyll a. All chlorophylls ...