Search results
Results from the WOW.Com Content Network
This is an example of the Schotten–Baumann reaction: C 6 H 5 COCl + HOC 6 H 5 → C 6 H 5 CO 2 C 6 H 5 + HCl. Phenol is reduced to benzene when it is distilled with zinc dust or when its vapour is passed over granules of zinc at 400 °C: [22] C 6 H 5 OH + Zn → C 6 H 6 + ZnO
Via the Hock rearrangement, cyclohexylbenzene hydroperoxide cleaves to give phenol and cyclohexanone. Cyclohexanone is an important precursor to some nylons. [8] Starting with the alkylation of benzene with mixture of 1 and 2-butenes, the cumene process produces phenol and butanones. [5]
Many phenols of commercial interest are prepared by elaboration of phenol or cresols. They are typically produced by the alkylation of benzene/toluene with propylene to form cumene then O 2 is added with H 2 SO 4 to form phenol (Hock process). In addition to the reactions above, many other more specialized reactions produce phenols:
Usually phenol ethers are synthesized through the condensation of phenol and an organic alcohol; however, other known reactions regarding the synthesis of ethers can be applied to phenol ethers as well. Anisole (C 6 H 5 OCH 3) is the simplest phenol ether, and is a versatile precursor for perfumes and pharmaceuticals. [1]
Benzene can be readily converted to chlorobenzene by nucleophilic aromatic substitution via a benzyne intermediate. [1] Chlorobenzene is treated with aqueous sodium hydroxide at 350 °C and 300 bar or molten sodium hydroxide at 350 °C to convert it to sodium phenoxide, which yields phenol upon acidification. [2]
[6] [7] Due to the two step nature, the Raschig–Hooker process can be used to produce either chlorobenzene or phenol. Reaction scheme of the Raschig-Hooker process. The Raschig–Hooker process's ability to make phenol makes it comparable to other methods, such as the Dow and Bayer process, which also converts benzene into phenol. In fact ...
Phenol is an ortho/para director, but in a presence of base, the reaction is more rapid. It is due to the higher reactivity of phenolate anion. The negative oxygen was 'forced' to give electron density to the carbons (because it has a negative charge, it has an extra +I effect).
Duff reaction syringaldehyde. Unlike other formylation reactions the Duff reaction is able to attach multiple aldehyde groups. If both ortho positions are vacant then a diformylation is possible, as in the formation of diformylcresol from p-cresol. [6] Conversion of phenol to the corresponding 1,3,5-trialdehyde has also been reported [7]