Search results
Results from the WOW.Com Content Network
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
In human anatomy, topography is superficial human anatomy. In mathematics the concept of topography is used to indicate the patterns or general organization of features on a map or as a term referring to the pattern in which variables (or their values) are distributed in a space.
The following definitions are also fundamental to algebraic topology, differential topology and geometric topology. For a list of terms specific to algebraic topology, see Glossary of algebraic topology. All spaces in this glossary are assumed to be topological spaces unless stated otherwise.
In mathematics, geometry and topology is an umbrella term for the historically distinct disciplines of geometry and topology, as general frameworks allow both disciplines to be manipulated uniformly, most visibly in local to global theorems in Riemannian geometry, and results like the Gauss–Bonnet theorem and Chern–Weil theory.
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group , which records information about loops in a space.
The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a topology. A set with a topology is called a topological space.
In all dimensions, the fundamental group of a manifold is a very important invariant, and determines much of the structure; in dimensions 1, 2 and 3, the possible fundamental groups are restricted, while in dimension 4 and above every finitely presented group is the fundamental group of a manifold (note that it is sufficient to show this for 4- and 5-dimensional manifolds, and then to take ...
An open surface with x-, y-, and z-contours shown.. In the part of mathematics referred to as topology, a surface is a two-dimensional manifold.Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball.