Search results
Results from the WOW.Com Content Network
The ligase chain reaction (LCR) is a method of DNA amplification. The ligase chain reaction (LCR) is an amplification process that differs from polymerase chain reaction (PCR) in that it involves a thermostable ligase to join two probes or other molecules together which can then be amplified by standard PCR cycling. [ 1 ]
The lower the value of the calculated entropy, the more homogeneous the region is in terms of amino acid content. In addition, a Neural Network webserver, LCR-hound has been developed to predict the function of an LCR, based on its amino acid or di-amino acid content. [8]
LCR-eXXXplorer offers tools for displaying LCRs from the UniProt/SwissProt knowledgebase, in combination with other relevant protein features, predicted or experimentally verified. Also, users may perform queries against a custom designed sequence/LCR-centric database.
A locus control region (LCR) is a long-range cis-regulatory element that enhances expression of linked genes at distal chromatin sites. It functions in a copy number-dependent manner and is tissue-specific, as seen in the selective expression of β-globin genes in erythroid cells . [ 1 ]
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
LCR meter, for measuring inductance, capacitance and resistance; Left/Center/Right, a speaker designation type used in surround sound; Molecular biology.
In enzymology, a leucoanthocyanidin reductase (EC 1.17.1.3) (LAR, aka leucocyanidin reductase or LCR) is an enzyme that catalyzes the chemical reaction (2R,3S) ...
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...