enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Baryogenesis - Wikipedia

    en.wikipedia.org/wiki/Baryogenesis

    In physical cosmology, baryogenesis (also known as baryosynthesis [1] [2]) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, i.e. the imbalance of matter and antimatter (antibaryons) in the observed universe.

  3. Here’s why the universe has more matter than antimatter - AOL

    www.aol.com/why-universe-more-matter-antimatter...

    All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.

  4. Baryon asymmetry - Wikipedia

    en.wikipedia.org/wiki/Baryon_asymmetry

    Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges. [3] The Big Bang should have produced equal amounts of matter and antimatter. Since this does not seem to have been ...

  5. List of unsolved problems in astronomy - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Since 2003, Jean-Pierre Luminet, et al., and other groups have suggested that the shape of the universe may be the Poincaré dodecahedral space. Is the shape unmeasurable, the Poincaré space, or another 3-manifold? Cosmic inflation: Is the theory of cosmic inflation in the very early universe correct? If so, what are the details of this epoch?

  6. Right again, Einstein! Study shows how antimatter ... - AOL

    www.aol.com/news/again-einstein-study-shows...

    Under current theory, the Big Bang explosion that initiated the universe should have produced equal amounts of matter and antimatter. This, however, does not seem to be the case.

  7. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...

  8. Leptogenesis - Wikipedia

    en.wikipedia.org/wiki/Leptogenesis

    Why does the observable universe have more matter than antimatter? (more unsolved problems in physics) In physical cosmology , leptogenesis is the generic term for hypothetical physical processes that produced an asymmetry between leptons and antileptons in the very early universe , resulting in the present-day dominance of leptons over ...

  9. Horizon problem - Wikipedia

    en.wikipedia.org/wiki/Horizon_problem

    The epoch of recombination occurred during a matter dominated era of the universe, so we can approximate () as () (+). Putting these together, we see that the angular diameter distance, or the size of the observable universe for a redshift z r e c ≈ 1100 {\displaystyle z_{rec}\approx 1100} is