Search results
Results from the WOW.Com Content Network
The identity is named after Alexandre-Théophile Vandermonde (1772), although it was already known in 1303 by the Chinese mathematician Zhu Shijie. [1] There is a q-analog to this theorem called the q-Vandermonde identity. Vandermonde's identity can be generalized in numerous ways, including to the identity
As with the (non-q) Chu–Vandermonde identity, there are several possible proofs of the q-Vandermonde identity. The following proof uses the q -binomial theorem . One standard proof of the Chu–Vandermonde identity is to expand the product ( 1 + x ) m ( 1 + x ) n {\displaystyle (1+x)^{m}(1+x)^{n}} in two different ways.
Another way to derive the above formula is by taking a limit of the Vandermonde matrix as the 's approach each other. For example, to get the case of x 1 = x 2 {\displaystyle x_{1}=x_{2}} , take subtract the first row from second in the original Vandermonde matrix, and let x 2 → x 1 {\displaystyle x_{2}\to x_{1}} : this yields the ...
which follows from Euler's integral formula by putting z = 1. It includes the Vandermonde identity as a special case. For the special case where =, (,;;) = () Dougall's formula generalizes this to the bilateral hypergeometric series at z = 1.
One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.
It is a generalization of Vandermonde's identity, ... "Two matrix inversions associated with the Hagen-Rothe formula, their q-analogues and applications", ...
The defining property of the Vandermonde polynomial is that it is alternating in the entries, meaning that permuting the by an odd permutation changes the sign, while permuting them by an even permutation does not change the value of the polynomial – in fact, it is the basic alternating polynomial, as will be made precise below.
Alexandre-Théophile Vandermonde (28 February 1735 – 1 January 1796) was a French mathematician, musician, and chemist who worked with Bézout and Lavoisier; his name is now principally associated with determinant theory in mathematics.