Search results
Results from the WOW.Com Content Network
Room acoustics is a subfield of acoustics dealing with the behaviour of sound in enclosed or partially-enclosed spaces. The architectural details of a room influences the behaviour of sound waves within it, with the effects varying by frequency .
The energy transformed into heat is said to have been 'lost'. [1] When sound from a loudspeaker collides with the walls of a room, part of the sound's energy is reflected back into the room, part is transmitted through the walls, and part is absorbed into the walls. Just as the acoustic energy was transmitted through the air as pressure ...
Acoustic diffusing discs (illuminated blue) hanging from the ceiling of the Royal Albert Hall. Diffusion, in architectural acoustics, is the spreading of sound energy evenly in a given environment. A perfectly diffusive sound space is one in which the reverberation time is the same at any listening position. Most interior spaces are non ...
Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [2] as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface."
In acoustics, the sabin (or more precisely the square foot sabin) is a unit of sound absorption, used for expressing the total effective absorption for the interior of a room. Sound absorption can be expressed in terms of the percentage of energy absorbed compared with the percentage reflected.
The input of acoustic energy to the room at the modal frequencies and multiples thereof causes standing waves. The nodes and antinodes of these standing waves result in the loudness of the particular resonant frequency being different at different locations of the room. These standing waves can be considered a temporary storage of acoustic ...
Sound measurement and analysis reached new levels of accuracy and sophistication through the use of electronics and computing. The ultrasonic frequency range enabled wholly new kinds of application in medicine and industry. New kinds of transducers (generators and receivers of acoustic energy) were invented and put to use.
Resonating bass traps will absorb sound with high efficiency at their fundamental frequency of resonance. As such, a knowledge of the frequencies of resonances which require damping is helpful before designing and constructing a resonating bass trap. This can be attained by calculation of the room's modes or by direct measurement of the room ...