Search results
Results from the WOW.Com Content Network
Ideal diode with a series voltage source and resistor. The I-V characteristic of the final circuit looks like this: I-V characteristic of an ideal diode with a series voltage source and resistor. The real diode now can be replaced with the combined ideal diode, voltage source and resistor and the circuit then is modelled using just linear elements.
Examples of such problems include, for example, mechanical impact problems, electrical circuits with ideal diodes, Coulomb friction problems for contacting bodies, and dynamic economic and related problems such as dynamic traffic networks and networks of queues (where the constraints can either be upper limits on queue length or that the queue ...
Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3] He calls it "a theoretical rectification formula giving the maximum rectification", with a footnote referencing a paper by Carl Wagner , Physikalische Zeitschrift 32 , pp ...
The circuit is treated as a completely linear network of ideal diodes. Every time a diode switches from on to off or vice versa, the configuration of the linear network changes. Adding more detail to the approximation of equations increases the accuracy of the simulation, but also increases its running time.
Active full-wave rectification with two MOSFETs and a center tap transformer. Replacing a diode with an actively controlled switching element such as a MOSFET is the heart of active rectification. MOSFETs have a constant very low resistance when conducting, known as on-resistance (R DS(on)). They can be made with an on-resistance as low as 10 ...
The expressions are derived for a PNP transistor. For an NPN transistor, n has to be replaced by p, and p has to be replaced by n in all expressions below. The following assumptions are involved when deriving ideal current-voltage characteristics of the BJT [7] Low level injection; Uniform doping in each region with abrupt junctions
The transfer function of an ideal diode has been given at the top of this (non-linear) section. However, this formula is rarely used in network analysis, a piecewise approximation being used instead. It can be seen that the diode current rapidly diminishes to -I o as the voltage falls. This current, for most purposes, is so small it can be ignored.
Tunnel diodes and Gunn diodes are examples of components that have negative resistance. Hysteresis vs single-valued: Devices which have hysteresis; that is, in which the current–voltage relation depends not only on the present applied input but also on the past history of inputs, have I–V curves consisting of families of closed loops. Each ...