Search results
Results from the WOW.Com Content Network
George Keith Batchelor FRS [1] (8 March 1920 – 30 March 2000) was an Australian applied mathematician and fluid dynamicist. He was for many years a Professor of Applied Mathematics in the University of Cambridge , and was founding head of the Department of Applied Mathematics and Theoretical Physics (DAMTP).
In fluid and molecular dynamics, the Batchelor scale, determined by George Batchelor (1959), [1] describes the size of a droplet of fluid that will diffuse in the same time it takes the energy in an eddy of size η to dissipate. The Batchelor scale can be determined by: [2]
In fluid dynamics, Prandtl–Batchelor theorem states that if in a two-dimensional laminar flow at high Reynolds number closed streamlines occur, then the vorticity in the closed streamline region must be a constant. A similar statement holds true for axisymmetric flows. The theorem is named after Ludwig Prandtl and George Batchelor.
The following outline is provided as an overview of and topical guide to fluid dynamics: . In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.
Fluid mechanics, especially fluid dynamics, is an active field of research, typically mathematically complex. Many problems are partly or wholly unsolved and are best addressed by numerical methods, typically using computers. A modern discipline, called computational fluid dynamics (CFD), is devoted to this approach. [2]
An introduction to astrophysical fluid dynamics. Imperial College Press. ISBN 978-1-86094-615-8. Bennett, Andrew (2006). Lagrangian fluid dynamics. Cambridge: Cambridge University Press. ISBN 978-0-521-85310-1. Badin, G.; Crisciani, F. (2018). Variational Formulation of Fluid and Geophysical Fluid Dynamics - Mechanics, Symmetries and ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.