Search results
Results from the WOW.Com Content Network
Endochondral ossification is responsible for development of most bones including long and short bones, [4] the bones of the axial (ribs and vertebrae) and the appendicular skeleton (e.g. upper and lower limbs), [5] the bones of the skull base (including the ethmoid and sphenoid bones) [6] and the medial end of the clavicle. [7]
Diagram showing stages of endochondral ossification. Endochondral ossification is the formation of long bones and other bones. This requires a hyaline cartilage precursor. There are two centers of ossification for endochondral ossification. The primary center. In long bones, bone tissue first appears in the diaphysis (middle of shaft).
The process of endochondral ossification, which converts the cartilage models into bone, begins by the twelfth week of embryonic development. At birth, ossification of much of the bone has occurred, but the hyaline cartilage of the epiphyseal plate will remain throughout childhood and adolescence to allow for bone lengthening.
An ossification center is a point where ossification of the hyaline cartilage begins. The first step in ossification is that the chondrocytes at this point become hypertrophic and arrange themselves in rows. [1] The matrix in which they are imbedded increases in quantity, so that the cells become further separated from each other.
Its lateral end is formed by intramembranous ossification while medially it is formed by endochondral ossification. It consists of a mass of cancellous bone surrounded by a compact bone shell. The cancellous bone forms via two ossification centres, one medial and one lateral, which fuse later on.
It usually consists of only endochondral ossification. Sometimes, intramembranous ossification occurs together with endochondral ossification. Intramembranous ossification, mediated by the periosteal layer of bone, occurs with the formation of callus. For endochondral ossification, deposition of bone only occurs after the mineralised cartilage.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The longitudinal growth of long bones is a result of endochondral ossification at the epiphyseal plate. Bone growth in length is stimulated by the production of growth hormone (GH), a secretion of the anterior lobe of the pituitary gland.