Search results
Results from the WOW.Com Content Network
The minimum disagreement correlation clustering problem is the following optimization problem: + + (). Here, the set + contains the attractive edges whose endpoints are in different components with respect to the clustering and the set () contains the repulsive edges whose endpoints are in the same component with respect to the clustering .
MALLET is an integrated collection of Java code useful for statistical natural language processing, document classification, cluster analysis, information extraction, topic modeling and other machine learning applications to text.
The Java just-in-time compiler optimizes all combinations to a similar extent, making benchmarking results more comparable if they share large parts of the code. When developing new algorithms or index structures, the existing components can be easily reused, and the type safety of Java detects many programming errors at compile time.
H2O.ai is an open-source data science and machine learning platform; KNIME is a machine learning and data mining software implemented in Java. Massive Online Analysis (MOA) is an open-source project for large scale mining of data streams, also developed at the University of Waikato in New Zealand. Neural Designer is a data mining software based ...
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
DBSCAN optimizes the following loss function: [10] For any possible clustering = {, …,} out of the set of all clusterings , it minimizes the number of clusters under the condition that every pair of points in a cluster is density-reachable, which corresponds to the original two properties "maximality" and "connectivity" of a cluster: [1]
Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]
Jaccard distance is commonly used to calculate an n × n matrix for clustering and multidimensional scaling of n sample sets. This distance is a metric on the collection of all finite sets. [8] [9] [10] There is also a version of the Jaccard distance for measures, including probability measures.