Search results
Results from the WOW.Com Content Network
Dental percolation, increase rate of decay under crowns because of a conducive environment for strep mutants and lactobacillus Potential sites for septic systems are tested by the " perc test ". Example/theory: A hole (usually 6–10 inches in diameter) is dug in the ground surface (usually 12–24" deep).
A percolation test (colloquially called a perc test) is a test to determine the water absorption rate of soil (that is, its capacity for percolation) in preparation for the building of a septic drain field (leach field) or infiltration basin. [1] The results of a percolation test are required to design a septic system properly.
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters.
Percolation clusters become self-similar precisely at the threshold density for sufficiently large length scales, entailing the following asymptotic power laws: . The fractal dimension relates how the mass of the incipient infinite cluster depends on the radius or another length measure, () at = and for large probe sizes, .
First passage percolation is one of the most classical areas of probability theory. It was first introduced by John Hammersley and Dominic Welsh in 1965 as a model of fluid flow in a porous media. [1] It is part of percolation theory, and classical Bernoulli percolation can be viewed as a subset of first passage percolation.
The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...