Search results
Results from the WOW.Com Content Network
A simple (non-self-intersecting) quadrilateral is a parallelogram if and only if any one of the following statements is true: [2] [3] Two pairs of opposite sides are parallel (by definition). Two pairs of opposite sides are equal in length. Two pairs of opposite angles are equal in measure. The diagonals bisect each other.
A self-intersecting quadrilateral is called variously a cross-quadrilateral, crossed quadrilateral, butterfly quadrilateral or bow-tie quadrilateral. In a crossed quadrilateral, the four "interior" angles on either side of the crossing (two acute and two reflex , all on the left or all on the right as the figure is traced out) add up to 720°.
Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .
In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles.It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle.
The other two sides are called the legs (or the lateral sides) if they are not parallel; otherwise, the trapezoid is a parallelogram, and there are two pairs of bases. A scalene trapezoid is a trapezoid with no sides of equal measure, [3] in contrast with the special cases below.
The midpoints of the sides of an arbitrary quadrilateral form a parallelogram. If the quadrilateral is convex or concave (not complex), then the area of the parallelogram is half the area of the quadrilateral. If one introduces the concept of oriented areas for n-gons, then this area equality also holds for complex quadrilaterals. [2]
A quadrilateral is a kite if and only if any one of the following conditions is true: The four sides can be split into two pairs of adjacent equal-length sides. [7] One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects ...
The Van Aubel points, the mid-points of the quadrilateral diagonals and the mid-points of the Van Aubel segments are concyclic. [3] A few extensions of the theorem, considering similar rectangles, similar rhombi and similar parallelograms constructed on the sides of the given quadrilateral, have been published on The Mathematical Gazette. [5] [6]