enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Rayleigh quotient iteration - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient_iteration

    Rayleigh quotient iteration is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates. Rayleigh quotient iteration is an iterative method , that is, it delivers a sequence of approximate solutions that converges to a true solution in the limit.

  4. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.

  5. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    An alternative approach, e.g., defining the normal matrix as = of size , takes advantage of the fact that for a given matrix with orthonormal columns the eigenvalue problem of the Rayleigh–Ritz method for the matrix = = can be interpreted as a singular value problem for the matrix . This interpretation allows simple simultaneous calculation ...

  6. Divide-and-conquer eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer...

    The eigenvalues and eigenvectors of are simply those of and , and it will almost always be faster to solve these two smaller problems than to solve the original problem all at once. This technique can be used to improve the efficiency of many eigenvalue algorithms, but it has special significance to divide-and-conquer.

  7. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.

  8. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    Furthermore, because the determinant equals the product of the eigenvalues, we have = where the λ i {\displaystyle \lambda _{i}} are eigenvalues of A {\displaystyle A} . We can extend the above properties to a non-square complex matrix A {\displaystyle A} by introducing the definition of QR decomposition for non-square complex matrices and ...

  9. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    6. This implementation does not correctly account for the case in which one dimension is an independent subspace. For example, if given a diagonal matrix, the above implementation will never terminate, as none of the eigenvalues will change. Hence, in real implementations, extra logic must be added to account for this case.