Search results
Results from the WOW.Com Content Network
In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.
The length of a string can also be stored explicitly, for example by prefixing the string with the length as a byte value. This convention is used in many Pascal dialects; as a consequence, some people call such a string a Pascal string or P-string. Storing the string length as byte limits the maximum string length to 255.
In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
In Python, the int type has a bit_count() method to count the number of bits set. This functionality was introduced in Python 3.10, released in October 2021. [17] In Common Lisp, the function logcount, given a non-negative integer, returns the number of 1 bits. (For negative integers it returns the number of 0 bits in 2's complement notation.)
Ukkonen's 1985 algorithm takes a string p, called the pattern, and a constant k; it then builds a deterministic finite state automaton that finds, in an arbitrary string s, a substring whose edit distance to p is at most k [13] (cf. the Aho–Corasick algorithm, which similarly constructs an automaton to search for any of a number of patterns ...
The remainder of this section explains two applications of the LCP array in more detail: How the suffix array and the LCP array of a string can be used to construct the corresponding suffix tree and how it is possible to answer LCP queries for arbitrary suffixes using range minimum queries on the LCP array.
The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.
Thus in a totally ordered set, we can simply use the terms minimum and maximum. If a chain is finite, then it will always have a maximum and a minimum. If a chain is infinite, then it need not have a maximum or a minimum. For example, the set of natural numbers has no maximum, though it has a minimum.