enow.com Web Search

  1. Ads

    related to: flow rate 3 4 pex water line

Search results

  1. Results from the WOW.Com Content Network
  2. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)

  3. Cross-linked polyethylene - Wikipedia

    en.wikipedia.org/wiki/Cross-linked_polyethylene

    A cross-linked polyethylene (PEX) pipe. Cross-linked polyethylene, commonly abbreviated PEX, XPE or XLPE, is a form of polyethylene with cross-links.It is used predominantly in building services pipework systems, hydronic radiant heating and cooling systems, domestic water piping, insulation for high tension (high voltage) electrical cables, and baby play mats.

  4. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    In most contexts a mention of rate of fluid flow is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as discharge. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1. The integration ...

  5. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [3]

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Q is the volumetric flow rate, used here to measure flow instead of mean velocity according to Q = ⁠ π / 4 ⁠ D c 2 <v> (m 3 /s). Note that this laminar form of Darcy–Weisbach is equivalent to the Hagen–Poiseuille equation, which is analytically derived from the Navier–Stokes equations.

  7. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    For a compressible fluid in a tube the volumetric flow rate Q(x) and the axial velocity are not constant along the tube; but the mass flow rate is constant along the tube length. The volumetric flow rate is usually expressed at the outlet pressure. As fluid is compressed or expanded, work is done and the fluid is heated or cooled.

  1. Ads

    related to: flow rate 3 4 pex water line