Search results
Results from the WOW.Com Content Network
In the CF 3 radical the fluorine atom is an electron-withdrawing group via the inductive effect but also a weak pi donor through interaction of the fluorine lone pair with the radical center's SOMO. Compared to the methyl radical the CF 3 radical is pyramidal (angle 107.8 °C ) with a large inversion barrier, electrophilic and also more reactive.
Trifluoromethyl group covalently bonded to an R group. The trifluoromethyl group is a functional group that has the formula-CF 3. The naming of is group is derived from the methyl group (which has the formula -CH 3), by replacing each hydrogen atom by a fluorine atom. Some common examples are trifluoromethane H– CF 3, 1,1,1-trifluoroethane H ...
6 followed by reaction with an electron-rich arene. Now the reaction of the source of the cation [clarification needed] usually uses 5-(trifluoromethyl)dibenzothiophenium tetrafluoroborate as the reagent. [3] One of the active reagents for making the cation.
Electron-withdrawing groups exert an "inductive" or "electron-pulling" effect on covalent bonds. The strength of the electron-withdrawing group is inversely proportional to the pKa of the carboxylic acid. [2] The inductive effect is cumulative: trichloroacetic acid is 1000x stronger than chloroacetic acid.
In this usage, a leaving group is a less formal but more commonly used synonym of the term nucleofuge. In this context, leaving groups are generally anions or neutral species, departing from neutral or cationic substrates, respectively, though in rare cases, cations leaving from a dicationic substrate are also known. [3]
An electron donating group (EDG) or electron releasing group (ERG, Z in structural formulas) is an atom or functional group that donates some of its electron density into a conjugated π system via resonance (mesomerism) or inductive effects (or induction)—called +M or +I effects, respectively—thus making the π system more nucleophilic.
A fixture at any fast food restaurant or backyard barbecue is American cheese. These orange, plastic-wrapped slices are unparalleled in terms of meltability. For many, when it comes to making a ...
Radicals can be stabilized by a synergistic effect of both electron-withdrawing group and electron-donating group substituents. Electron-withdrawing groups often contain empty π* orbitals that are low in energy and overlap with the SOMO, creating two new orbitals: one that is lower in energy and stabilizing to the radical, and an empty higher ...